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1. Introduction 

There is a need to develop new sensing technology to acquire structural diagnostic information 
more efficiently using a suboptimal number of sensors. The desire to limit the number of sensors 
is in part due to the following issues1: 

• High deployment cost. The cost of installing a large number of sensors and the attendant 
cabling has always been a major cost driver of structural health monitoring (SHM) systems.  

• Altered structural or mechanical integrity. Emplacing or embedding a large number of 
sensors may reduce the capacity of load-bearing structures.2  

• Lack of feasible sensor placement region. Complex geometry components may not have 
feasible regions where sensors can be emplaced or embedded.  

There are also, however, valid reasons to use a large number of sensors:  

• Large area of a structure is monitored. The number of distributed sensors increases with 
the spatial size of the monitored area or the area to be covered.  

• Improved detection accuracy. Accurate damage detection may require fusion of 
information collected from several heterogeneous sensors.   

Combining these 2 conflicting needs reveals that the existing SHM sensing technology cannot 
meet the requirements of low-cost and zero-miss damage detection systems.    

Consider, for example, the problem of collecting full-field strain information from a composite 
shaft, as shown in Fig. 1. The figure shows a composite tube with 5 strain sensors on the left-
hand side; these sensors are used to monitor the condition of the tube in a conventional SHM 
paradigm. On the right-hand side is full-field strain image obtained using a digital image 
correlation nondistractive inspection technique. A damage pattern recognition system built with 
the SHM system of the tube using the full-field information will be more robust than one using 
data from the 5 strain sensors alone. Full-field measurements enable detection of heterogeneities 
in a strain, stress, or temperature field that can’t be seen using conventional sensor 
measurements. However, acquiring a full-field strain image using strain sensors requires strain 
gages to be placed at every pixel point on the tube, which is not feasible.  



 

 2 

 

Correlated Solutions [2011 Aug 23]. http://www.correlatedsolutions.com/products/. Reprinted with permission. 

Fig. 1    Strain sensors and full-field digital image correlation 

The objective of this research is to develop fundamentally new sensing technology using the 
novel theory of compressive sensing and principles of continuum mechanics. Compressive 
sensing, also known as compressed sensing, refers to the theory that, for certain types of signals, 
a small number of nonadaptive samples carries sufficient information to approximate the signal. 
The theory asserts that certain signals or images can be recovered from what was previously 
believed to be a highly incomplete measurement. Compressed sensing is a relatively new theory 
with a potential to address problems in sensor technology and similar areas of applications. The 
link between compressed sensing and SHM can be established as follows. It is well known that 
structural damage is a sparse event, and the mechanical metrics, such as stress, strain, etc., whose 
perturbation presages damage is a superposition of a finite number of spikes resulting from 
discontinuities (such as cracks) in the structure. The aim of SHM is to quantify and locate the 
spikes in the structure. Compressed sensing, at least theoretical, can provide information about 
this spiky data using a limited number of sensors that directly acquire compressed data. This 
work is the first attempt to implement compressed sensing in SHM. If implemented successfully, 
the method would enable diagnosis over a wide inspection area using far fewer sensors than 
traditionally possible. 

Sections 1–4 of this report deal with the theoretical aspects of compressive sensing. A detailed 
description of the mathematical formulation and practical definition of signals that can be 
recovered using compressive sensing are provided. Sections 5–8 outline the implementation of 
the compressive sensing technique in structural health monitoring. A numerical experiment 
showing reconstruction of full-field strain data from discrete strain measurements is presented. 
The example assumes that a critical load-carrying member is instrumented with a network 
consisting of suboptimal strain-measuring sensors (e.g., fiber optic sensors with Bragg gratings) 
and that strain data is only available at far fewer discrete locations than would be required to 
construct full-field information.

http://www.correlatedsolutions.com/products/
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2. Theory 

Compressive sensing relies on the empirical observation that certain types of signals or images 
can be well-approximated by a sparse expansion in terms of a suitable basis or frame.3,4 This 
means that the expansion has only a small number of significant terms or, in other words, that the 
coefficient vector can be well-approximated with one having only a small number of 
nonvanishing entries.5,6 Graphically, as shown in Fig. 2, the N-sampled data can be 
approximated by only M-samples (or measurements), such that M << N provided the data is k-
sparse.7 

 

Fig. 2   Compressive sensing 

Mathematically, for a given basis function { }N
iiψ 1=  a signal x ∈ RN can be represented by N 

coefficients { }N
iiα 1=  as ∑ =

=
N

i iiψαx
1

 or in a vector form αx Ψ= . A signal x is k-sparse if only K 
<< N entries of x are nonzero. The set of indices corresponding to the nonzero entries are called 
the support of x and are denoted by ( ) { }0≠= jxjx :supp  and 

                                                        . (1) 

|supp(x)| denotes the cardinality of supp(x). For a k-sparse signal x, the l0-quasinorm k≤
0

x  

and for { }N,1,2,∈k , the set of all k-sparse signals is the union of the 







K
N

 k-dimensional 

subspaces aligned with the coordinate axes in RN. Such a union of subspaces can be denoted by 
Σk  

                                           { }kxRx N
k ≤∈=Σ

0
::  . (2) 

M-samples 

y = Φ x = ΦΨα 

y Φ Ψ α 

k-sparse 
N-samples 
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Furthermore, the best k-term expansion of the signal x ∈ RN in lp (Lp-norm) is defines as 

                                           ( )
pkxpk xxxσ

kk

−=
Σ∈

inf . (3) 

x is said to be compressible if σk (x) decays quickly in k. Indeed, in order to compress x one may 
simply store only the k largest coefficients. When x is reconstructed from its compressed version, 
the nonstored entries are simply set to zero, and the reconstruction error σk (x)p is often very small.  

Many natural and manmade signals are not strictly sparse but can be approximated as such and 
are, therefore, compressible. Consider a signal x whose coefficients, when sorted in order of 
decreasing magnitude, are ( ) ( )Tii N

xxxr ,,
1

= , such that 
1+

≥
jj ii xx  for j = 1, . . . , N − 1 decay 

according to the power law8 

                                           NiSix r
ir ,,,)( 1

1

=≤ − . (4) 

Owing to the rapid decay of the sorted coefficients, such signals are well approximated by  
k-sparse signals. Let xk ∈ Σk represent the best k-term approximation of x, which is obtained by 

keeping just the first k terms in xr(i). Then the reconstruction error in the lp sense is 

                                           ( )
pKp

σx
pk xxxxxE

K

−=−=
∈
minarg: , (5) 

where the lp  norm of the vector x is defined  as 

                                           ( )pN

i

p
in

xx
1

1∑=
= . (6) 

 Then the error7 

                                           ( ) ( ) s
pk SkrsxE p −−≤

1

 (7) 

with prs 11 −= . That is, when measured in the lp  
norm, the signal’s best approximation error has 

a power-law decay with exponent s as k increases. Such a signal is denoted as s-compressible. 
In the traditional signal compression framework, as shown in Fig. 3, one generally acquires the 
full N-sample signal x; compute the complete set of transform coefficients α = Ψ−1x; locate the k 
largest terms and discard the (N − k) smallest coefficients; and encode the k values and locations 
of the largest coefficients. 

 

Fig. 3   Traditional sample-then-compress data acquisition 

Sample Compress 
x K N 

N>>K 
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While widely used in transform coding,9,10 this sample-then-compress strategy has several 
drawbacks. First, much effort is spent obtaining full information on the signal. Second, the 
encoder must compute all of the N transform coefficients α, even though it will discard all but k 
of them. What would be novel is to be able to obtain the compressed version of the signal 
directly (Fig. 4) by taking only a small number of measurements or samples. It is not obvious at 
all whether this is possible since measuring directly the large coefficients requires a priori 
knowledge of the support of the largest transform coefficients. Interestingly, for a certain type of 
signals, compressive sensing provides a technique of reconstructing a compressed version of the 
original signal by taking only a small amount of linear and nonadaptive measurements. The exact 
number of required compressed samples is comparable to the compressed size of the original 
signal. 

 
Fig. 4   Directly acquire compressed data 

3. Matrix Completion 

An interesting class problem that is similar to compressive sensing is matrix completion. In 
matrix completion, one would like to recover a data matrix M with n1 rows and n2 columns by 
observing only m of its entries, which is comparably much smaller than the total number of 
entries n1n2. A lot of real-world models can be categorized as matrix completion problems, 
provided the matrix describing the model is known to be structured in the sense that it is low 
rank. The general form of the problem is11 

                                ( ) ( ) Ω∈= jiMXXrank ijijX
,forsubject tomin , (8) 

where X is the decision variable, and rank (X) is equal to the rank of the matrix X. Eq. 7, 
unfortunately, has little practical use because this optimization problem is NP-hard 
(nondeterministic polynomial time hard), and known algorithms require time doubly exponential 
in the dimension n of the matrix. Hence, a heuristic alternative that minimizes the sum of the 
singular values over the constraint set is considered. This sum is called the nuclear norm and is 
given by11 

                                                       ( )∑
=

=
n

k
k XσX

1
*

, (9) 

where σk(X) denotes the kth largest singular value of X. The heuristic optimization of Eq. 8 is then 
given by11 
 

Compressive 
Sampling 

M x 

K<M<<N 
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                                           ijij MXX =   subject tomin
*

. (10) 

The rank function counts the number of nonvanishing singular values, whereas the nuclear norm 
sums their amplitude and, in some sense, is to the rank functional to what the convex l1 norm is 
to the counting l0 norm in compressive sensing. The matrix completion problem is quite similar 
to compressive sensing, as a similar heuristic approach, convex relaxation, is used to recover 
structured data. Matrix completion solves the nuclear norm of X to solve the rank minimization 
problem, while compressive sensing uses the l1-norm as a relaxation of the l0 counting problem.  

One practical application of matrix completion is in the triangulation of sensor data from 
incomplete measurements. Here, partial information is provided about the distances between 
sensors and reconstruction of the low-dimensional geometry describing their locations. For 
example, we may have a network of sensors scattered randomly across a region of a structure as 
shown in Fig. 5. Suppose each sensor only has the ability to construct distance estimates from its 
nearest fellow sensors. From these noisy distance estimates, we can form a partially observed 
distance matrix. We can then estimate the true distance matrix whose rank will be equal to 2 if 
the sensors are located in a plane or 3 if they are located in 3-dimensional (3-D) space. In this 
case, we need to observe only a few distances per node to have enough information to 
reconstruct the positions of the objects. 

 
Fig. 5   Spatially distributed strain sensors on a gridded plate 

4. Compressed Samples 

Compressive sensing integrates the signal acquisition and compression steps into a single 
process. In compressive sensing, one does not acquire x directly but rather acquires M < N linear 
measurements of y = Φx using an M × N measurement matrix Φ (also known as compressive 
sensing matrix). Normally, it is an underdetermined ill-posed problem to recover x from partial 
measurements y. To make it possible, compressive sensing relies on the assumptions of sparsity 
and incoherence. 
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i=1 

Sparsity: Let x ∈ RN be an unknown vector (depending on context, a digital image or signal) and 
Ψ a fixed dictionary such as Fourier, wavelets, or curvelets, then x can be decomposed into  
x = Ψα, where α is the vector of coefficients that represents x on Ψ. The unknown vector x is said 
to be sparse if all but a few entries of α are zero or they can be discarded without much loss of 
information.4,7  

Incoherence: For a given measurement matrix Φ, compressive sampling requires that Φ and the 
sparsity basis Ψ be as incoherent (dissimilar) as possible. A measurement of coherence between 
Φ and Ψ is given by4,7 

                                           ( ) jiNjni
ψφNμ ,,

max,
≤≤≤≤

=ΨΦ
11

, (11) 

where i, j denotes the index of columns in each matrix. Roughly, Eq. 10 implies that the basis 
{ψj} cannot sparsely represent the vector {φi} with the parameter [ ]Nμ ,1∈  measuring the 
maximal correlation between the 2 matrices. In general, random sampling matrixes are 
incoherent with most known fixed transform bases. The incoherence between the sampling 
matrices and sparse transform indicates that one can get new information from sampling, which 
is not already represented by the known dictionary Ψ since the measurements are global. 
Consider that αxy ΦΨ=Φ=  be the vector of n measurements of the sparse signal x, with the 
number of nonzero coefficients, 

                                                   NmαS <<<<=
0 , (12) 

where there are many more unknowns than measurements. Then it turns out that if the number of 
measurements m satisfies, 

                                               ( ) ( )NSμCm log, ⋅⋅ΨΦ⋅≥ 2 . (13) 

then, the original signal x can be reconstructed exactly from y with overwhelming probability by 
solving a convex problem,4,5,6 

                                          αyαα ΦΨ==  subject tominargˆ
1 , (14) 

where ∑=
=

N

i ixx
11

. By solving Eq. 13, one seeks the sparsest coefficients among all possible α, 
satisfying αy ΦΨ= . If the solution coincides with α, one can get a perfect reconstruction of the 
original unknown signal. 

4.1 Restricted Isometry Property 

To have a unique solution α̂  to the l1 minimization problem Eq. 13, the matrix ΦΨ holds the 
restricted isometry property (RIP). 
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Definition 1. The restricted isometry constant δk of a matrix ΦΨ ∈ Rm×N is the smallest number 
such that 

                                ( ) ( ) kkk xxδxxδ Σ∈+≤Φ≤−   allfor 2

2

2

2

2

2
11 . (15) 

A matrix ΦΨ is said to satisfy the RIP of order k with constant δk if 0 ≤ δk  ≤ 1. The k-RIP ensures 
that all submatrices of Φ of size M × k are close to an isometry, and therefore distance and 
information are preserved. In general, most realistic recovery algorithms typically require that 
ΦΨ have a slightly higher-order RIP (such as 2k-RIP, 3k-RIP) in order to preserve distances 
between k-sparse vectors and other higher-order structures. While the design of a measurement 
matrix ΦΨ satisfying the k-RIP is an NP-complete problem,12 random matrices whose entries are 
i.i.d. Gaussian, Bernoulli, and random Fourier work with high probability provided the number 
of compressed measurements M = O(k log(N/k)). 

Remark 1. A Gaussian matrix A has entries chosen as i.i.d. random variables with expectation 
0 and variance 1/m. The Gaussian matrix has an optimal RIP with 

                                ( )rNCrmδr /log. ≥⇒≤ 10 . (16) 

Remark 2. A Bernoulli matrix A has entries of m/1±  Bernoulli random variables with equal 
probability. 

Gaussian and Bernoulli matrices provide optimal conditions for sparse recovery of compressible 
signals using partial measurements. However, they are of somewhat limited use for practical 
applications where one rarely has the freedom to inject randomness into the measurements. Most 
practical applications impose physical or other constraints rather than randomness. A very 
important class of a structured random compressive sensing matrix is the partial Fourier matrix. 

Remark 3. A random partial Fourier matrix NmC ×∈Φ  is derived from the discrete Fourier 
matrix NNCF ×∈ with entries 

                                                 Njkπ
ij e

N
F /21

=  (17) 

by selecting m rows uniformly at random among all N rows. 
 
Theorem 1. Let NmC ×∈Φ be the random partial Fourier matrix as just described. Then the 
restricted isometry constant of the rescaled matrix AmN / satisfies δk  ≤ δ with a probability of 
at least ( )NγN

3

1 log−− , provided 

                                                 ( )NkδCm 42 log−≥ , (18) 

where C and γ > 1 are constants. Combining this estimate with the l1-minimization results shows 
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that recovery with high probability can be ensured for all k-sparse x, provided 

                                                 ( )NCkm 4log≥ . (19) 

The proof of this theorem is available in Candes et al.4 and Tropp and Gilbert.13 Even though 
partial Fourier matrices may require additional samples to achieve a small restricted isometry 
constant, they are more interesting for the following reasons:8 

• There are technologies that acquire random Fourier measurements at unit cost per sample, 
such as MRI. 

• The sampling matrix can be applied to a vector in time O(N log N). 

• The sampling matrix requires only O(m log N) storage. 

These traits are essential for the translation of compressive sampling from theory into practice. 

5. Application in Structural Health Monitoring 

The integrity of airframe structures gradually degrades because of slow-growing damage, such as 
crack propagation and corrosion. In general, such damage propagates monotonically, and the 
degradation increases the risk of operation and the cost of maintenance. To reduce cost, avert 
sudden component failure, and increase readiness, the degradation must be monitored. Structural 
health monitoring (SHM) is the process of detecting and locating damage in structures. The main 
goal of SHM is to improve the safety and reliability of structures by providing damage 
information before it reaches a critical state. To achieve this goal, various sensing technologies 
are being developed.  

The data acquisition portion of SHM involves selecting sensor type, sensor number, sensor 
location, and the transmitting hardware. In general, sensors do not “see” damage directly; 
instead, they sense the presence of damage indirectly by measuring adverse changes in structural 
response, such as loss of stiffness or excessive deformation and strain. Real-time reconstruction 
of the full-field deformation or strain is essential to provide a global state awareness of airframe 
structures. To perform strain-based SHM,14 the load-carrying component will be instrumented 
with a network of strain sensors, such as optical fiber sensors with Bragg gratings or strain gages. 
The full-field reconstruction of the strain field at every material point of the structure from a set 
of discrete point strain measurements represents an interesting problem that has never been 
solved before.
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6. Full-Field Strain 

As discussed in the first half of this report, compressive sensing relies on the empirical 
observation that certain types of signals or images can be well-approximated by a sparse 
expansion in terms of a suitable basis or frame. This means that the expansion has only a small 
number of significant terms or, in other words, that the coefficient vector can be well-
approximated with one having only a small number of nonvanishing entries. This observation has 
a direct implication in the number of measurement nodes (sensors) needed in SHM. A typically 
SHM observes a system over time using periodically sampled dynamic measurements or 
mechanical metrics (such as stress, deformation, temperature, acceleration, etc.). The structure of 
these metrics is governed by certain physical and empirical laws, such as continuum mechanics, 
second law of thermodynamics, and constitutive theories. If damage, such as a crack, occurs in a 
structure, the damage metric, such as the local strain field, shows spikes at or near the location of 
the damage (usually at the crack tip [also known as crack-tip singularity]), but farther away, the 
spiky metrics decay quickly, resulting in a smooth field, as shown in Fig. 6. 

 
Fig. 6   Finite element model showing the principal strain field on a rectangular plate 

The strain image shown in Figs. 6 or 7 is spiky. Such a spiky image often has a sparse 
representation in certain orthonormal bases. Figure 8 shows the frequency domain (Fourier basis) 
representation of the same strain image shown in Fig. 6. As can be seen on the fast-Fourier 
transform image, only a few large Fourier coefficients are needed to represent the strain field, 
and, as such, if one can directly acquire these large Fourier coefficients, it is possible that one 
can recover the entire strain image from very few measurements. Traditionally, however, if one 
needs to obtain the full-field strain, unless it is digital image correlation as in Fig. 1, one has to 
emplace sensors (strain gage) at every pixel point of the plate, which requires strain gages on the 
order of 103 or more. 
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Fig. 7   A 3-D surface plot of the finite-element analysis (FEA) strain field. The strain 

spikes near the center hole 

 

 

Fig. 8   The 2-D Fourier transform of the strain field 

As stated, to measure such a sparse event, conventional SHM systems require several emplaced 
or embedded sensors. Most of these sensors collect data that, in the new CS context, may not add 
much to the accuracy or robustness of the damage detection process. In addition, the strain 
measurement has to be acquired by a costly and lengthy measurement procedure, which seems to 
be a waste of resources. Hence, one might ask whether there is a clever way of obtaining the 
compressed version of the strain field directly by taking only a small number of measurements, 
such as a few large Fourier coefficients, as shown in Fig. 8. The desire to acquire full-field 
information from very few measurements is the major motivation of this research. In the 
following section, we present a model problem that employs the compressed sensing strategy.
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7. Problem Formulation 

Consider a rectangular plate with a fastener hole at the center. The plate is subjected to a 
boundary condition that resulted in the strain field shown in Fig. 9. Figure 10 shows the FEA 
strain field in gray scale. Suppose we wish to monitor the state of strain using optical fiber Bragg 
grating (or FBG) sensors embedded in the plate. For the sake of simplicity, we assume that the 
FBGs are embedded in the radial direction, as shown by the yellow lines in Fig. 10. The yellow 
lines are the direction along which strain is being measured. We considered FBGs here; however, 
strain gages emplaced along these lines can also be envisioned. FBGs are strain-measuring 
sensors that use the principle of low coherence optical interferometry. We assume that L number 
of FBG sensors with m measuring nodes are embedded in a star-shaped radial arrangement 
through the center of the hole. Our goal is to recover the full-field strain (x, y) from discrete 
strain samples measured at L × m measuring nodes (Fig. 11). The L × m measuring nodes on the 
FBG are sensor arrays in which a number of distributed nodes acquire data and transmit to a 
back-end decoder or storage unit. All these sensors observe a related phenomenon (strain) and, as 
such, the ensemble of measurements they acquire is assumed to possess some joint structure or 
sparsity. In addition, from Fig. 7 we may conclude that the ensemble is sparse in some domain. 

 

Fig. 9   Plate with center hole and FEA simulation 

 

 

Fig. 10   Sampling strain data along radial lines 



 

 13 

 

Fig. 11   Schematic of measuring nodes 

To develop the joint sparsity model, we denote each sensor measurement in the ensemble by                         
JjRε N

j ,,,, 21∈∈  as sensor nodes. We assume that there exists a known sparse dictionary Ψ 

∈ RN in which the strain εj can be sparsely represented. Denote by Φ the measurement matrix for 
signal  j; φj is Mj × N. For L = 2, 5, 7, 9 we used the l1-norm solution to recover the original 
signals as shown in the Results section. 
 

8. Results 

Figure 12 shows a 194- × 194-pixel strain image recovered using l1-norm. The main program 
code used to obtain the image is given in Appendix A. The l1-norm is the convex relaxation of 
the analytically intractable l0-norm. The reconstruction is obtained by maximizing the sparsity of 
the strain field in the Fourier domain. The 4 strain images shown in Fig. 12 are reconstructed 
from a limited number of Fourier samples taken along radial lines L as shown in Fig. 11. The 
number of samples used to reconstruct these strain images is much smaller than what would have 
been needed. The accuracy of reconstruction increases with the number of Fourier samples. 
Starting at L = 2, we see that the perturbation near the hole starts to appear clearly. A typical 
aerospace structure has a larger number of embedded FBGs than the numbers used in this 
example. With L = 9, one can almost clearly see the location of the peak strain (the spike). The 
results presented herein, in the current form, may not have the resolution and accuracy for use in 
a stand-alone SHM system; nonetheless, this approach might be implemented within passive 
system that serves as a warning mechanism to trigger a more robust system that performs an 
active scan of the area flagged by the sparse sensing unit. A step-by-step summary of tasks 
performed in this project are shown in Appendix B. Work is still in progress to further refine and 
extend this approach to piezoelectric signals, such as acoustic emission and ultrasonic guided 
wave SHM methods. 
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Fig. 12   Reconstructed strain images using (a)  

L = 2, (b) L = 5, (c) L = 7, and (d) L = 9
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Appendix A. Basis Pursuit
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The routine shown below solves the l1 problem using the basis pursuit. 

% Solve using CVX 
cvx_begin 

variable xp(n) 
minimize (norm(xp, 1)); 
subject to 

A * xp == y; 
cvx_end 
 
% CS example using CVX 
% Random sampling matrix 
% Representation basis is canonical 
% Recovery using l1-magic 
 
n = 512; % Signal length  
s = 25; % Sparsity 
C = 5; % Constant 
m = C*s; % Number of measurements 
 
f = get_sparse_fun(n, s);  
A = get_A_random(n, m); 
 
% Solve using l1-magic  
path(path, ’./OPtimization’); 
x0 = pinv(A) * y; % initial guess  
xp = l1eq_pd(x0, A, [], y, 1e-3); 
 
norm(f - xp)/norm(f) 
plot(f) hold on 
plot(xp, ’r.’) 
legend(’Original’, ’Recovered’)
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Appendix B. Task Summary
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This appendix summarizes the approach adopted while working on this project. 

1. Research the structure of mechanical diagnostic signals, and determine if these 
signals possess sparsity and structure that can be exploited during signal 
acquisition. Explore the concept of distributed coding for a multisignal ensemble. 

2. Research published dictionary of basis vectors in which mechanical metrics have 
sparse representation, and obtain a basis vector in which the joint measurement is 
sparse. Considered in this study are Fourier, discrete cosine, and wavelet basis 
vectors. 

3. Develop recovery algorithms to reconstruct the original mechanical signal using 
convex optimization. Compare L1-minimization, matching pursuit, iterative 
thresholding, and total variation minimization. 

4. Consider the model problem of reconstructing the 2-dimensional (2-D) strain field 
from incomplete measurement. Develop a finite element model of a rectangular 
plate with a center hole subjected to axial load and obtain nodal strain data. 

5. Obtain the 2-D fast-Fourier transform of the strain image. Then acquire 1% of the 
nodal strain values (surface nodes) from the 2-D Fourier transform of the strain 
image. Then, using the L1 minimization, recover the full-field image and compare 
with the original finite element simulation image. 

6. Explore concepts from continuum mechanics to develop a deterministic physics- 
based measuring matrix to subsample diagnostic data. Compare with random 
measurement matrices.  

7. Explore sensing technologies (sensors) that directly acquire compressed samples 
from the field of measurement.  
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